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Abstract– Online tracking of maneuvering target is a highly non-linear and
challenging problem in which the unknown state of the target is estimated
from noisy observations. The bearings-only tracking has the advantage of
direct measurement of the target location, from the beam crossing. To pro-
cess the non-linear measurements, Extended Kalman Filter(EKF) and Un-
scented Kalman filter(UKF) are generally used. If the target is maneuvering
and switching among different models like constant velocity (CV), constant
acceleration (CA) or constant turn (CT) interactive multiple models (IMM)
are employed. In this paper, IMM-EKF is comprehensively evaluated and
its performance is compared with conventional KF and EKF in terms of ro-
bustness, computational complexity and error performance.
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Model, Noise Covariance.

1. Introduction

The goal of the target tracking system is to follow the target
trajectory using useful information about the target’s state from
the sensor observations. The bearing-only tracking is of interest
for passive tracking of moving targets. It involves the determina-
tion of the trajectory of a target based on the non-linear measure-
ments, the bearing to the multiple sensors. In many tracking ap-
plications, a Kalman filter is used to estimate the position, veloc-
ity, and acceleration of a maneuvering target from noisy measure-
ments at high data rates [8-11]. In case of bearings measurement,
the dynamic equations turn out to be nonlinear which lead to the
application of the nonlinear models like extended Kalman filters
to tracking problems. The dynamic equations are linearized on
the state at each instant resulting in a system of equations with
time-dependent coefficients. Further considerations regarding the
non-linear approach can be found in [1, 2]. In the case of maneu-
vering targets, where the target switches between multiple states,
the interactive multiple model (IMM) is employed. IMM uses
a bank of filters processing in parallel [3], with each filter act-
ing on a dynamic model. The robustness of IMM Kalman filter
is not completely discussed in the literature. This paper provides
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an extensive comparison of filters using six different performance
parameters.

The paper organization is as follows. First filtering Algorithms
are briefly discussed. In Section 2 Mathematical modeling of tar-
get tracking, in Section 3 Simulations and results and in section
4 Conclusions and future scopes are discussed.

1.1. Kalman Filter

Kalman filter [4, 5, 6, 7] is a recursive filter which estimates the
state of a dynamic system from the noisy measurements. Only
the estimated state from the previous time step and the current
measurement are needed to compute the estimate of the current
state. It has two distinct phases (Fig. 1.):

Predict: The time update or predict state projects the current
state estimate ahead of time.
Correct: The projected estimates are adjusted by actual
measurements at that time.

The time update phase and the measurement update phase con-
sists of equations shown in fig (1) [4, 6, 8, 9, 10]:

1.2. Extended Kalman Filter

EKF is an non-linear version of kalman filter which linearizes
about the current mean and covariance. The state transition
and observation models are non-linear functions or differentiable
functions of the state.

The state of the target evolves according to the equation [11,
12]

X(k) = f (X(k − 1), k − 1) +Gwk. (1)

The measurement is given by

Z(x) = h(X(k), k) + vk. (2)

The functions f , h are non-linear functions of X, they cannot be
applied to covariance directly. The matrices of partial derivatives
of A,H are computed. The equations present in the EKF algo-
rithm [4, 5, 6] are shown in Fig. 2. QK−1 is the co-variance of
the process noise while Rk is the co-variance of the measurement
noise. The predicted state X(k)′ and the associated state predic-
tion covariance P(k) of the original non-linear model are linearly
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The time update phase and the measurement update phase consists of equations shown in fig(1)[1-3,8 ,10]
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Fig. 1. Steps in Kalman filter.
 

                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initial  

estimate  

for X(k-1)  

and P(k-1) 

Time update(predict) 

1)Project state ahead           

 

2)Project covariance ahead      

 

Measurement update(correction) 

 

1)Compute the Kalman gain:                

 

(2)Update estimate with measurements:  

 

(3)Update error covariance                  

 

Fig. 2. Steps in EKF algorithm.

approximated by EKF. To obtain X(k), the nonlinear function in
Equation (1) is expanded in vector Taylor series around the last
state estimate X(k − 1)[12].

f (x) = f (x̂) + ∇̄x f (x̂)(x − x̂) +
1
2
∇̄2

x f (x̂)(x − x̂)2 + H.0.T. (3)

Truncating the terms up to first and second order yield the first
and second order Extended Kalman Filter respectively.

1.3. IMM-EKF

Imm [3, 12, 13] is a versatile tool for adaptive state estimation
in systems whose behavior pattern changes with time. It is a hy-
brid filter system comprised of a finite number of system models,
used to solve the model behavior problem. A Markov transi-
tion matrix is specified to give the probability that the target is in
one of the models of operation. At each new measurement the
model probabilities are updated and the state matrix X(k) is cal-
culated using the resultant weighing factors. The scheme of IMM
is shown in Fig. 3.

One cycle of IMM consists of five major steps [3]:

Step 1: Calculation of mixing probabilities

µi/ j

(
k − 1
k − 1

)
= P

{
Mi(k − 1)

M j(k)
, zk−1

}
=

1
c̄ j

pi jµ j(k − 1) (4)

Where c̄ j =
∑r

i=1 pi jµ j(k − 1) is the predicted mode probabilities
and r different models.

Step 2: Calculate the mixed initial condition

x̂ri
(

k − 1
k − 1

)
=
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i=1
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(
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)
− x̂ri

(
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)]T

 (6)

Step 3: Perform mode-matched filtering and calculate the likeli-
hood function corresponding to the filter

The estimate x̂ri
(

k−1
k−1

)
and corresponding covariance P

′ j
(

k−1
k−1

)
are used as inputs to the filter matched to M j(k) which uses the
measurements z(k) to yield x̂ j( k

k ) and P j( k
k ).

The filter equations are shown in Fig. 2

Step 4: Update model probability

µ j(k) =
1
c
∧ j (k)c̄ j where c =

r∑
j=1

∧ j(k)c̄ j (7)

Step 5: combine model-conditioned estimates and covariance.

x̂(
k
k

) =
r∑

i=1

x̂i(
k
k

)µi(k) (8)

P(
k
k

) =
r∑

i=1

µi(k)

Pi(
k
k

) +
[
x̂i(

k
k

) − x̂(
k
k

)
] [

x̂i(
k
k

) − x̂(
k
k

)
]T

 (9)

2. Problem Description

The target motion can be described by a large number of mod-
els. It can move with constant velocity, constant acceleration
or constant turn. Here we consider a CV-CT-CV-CT-CV-CT-CV
model.
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Fig. 3. Interacting Multiple Model.

Fig. 4. True geometry of target.

2.1. Constant velocity(CV) model [14]
The state vector of the target is given by X(k) =

[xk, y j, vxk, vyk]T .
Where T denotes the matrix transpose. The state equation for

the target motion could be approximated with a linear equation
of the form

Xk+1 = Ak xk +Gwk.

Where xk is the state vector that contains state variables at time
k, and wk ∼ N(0,Qk) which is assumed as zero mean white noise
with covariance Qk (called process noise). The transition matrix
A and the process noise covariance matrix (Qk = E[wkwT

k ]) are
given by

A =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 Q = q1


T 3

3 0 T 2

2 0
0 T 3

3 0 T 2

2
0 0 T 3

3 0
0 0 0 T 3

3



Where q1 is the level of power spectral density.

2.2. Constant turn(CT) model [14]

The constant turn model has an angular velocity component
along with the position and velocity components. The state vec-
tor is of the form X(k) = [xk, yk, vxk, vyk,wk]. The transition ma-
trix is given by

A =


1 0 sin(wt)/w (cos(wt) − 1)/w 0
0 1 (cos(wt) − 1)/w sin(wt)/w 0
0 0 cos(wt) − sin(wt) 0
0 0 sin(wt) cos(wt) 0
0 0 0 0 1


Where wt = w ∗ T , the process noise co-variance matrix is calcu-
lated as Qk = E[wkwT

k ]

3. Simulations and Results

3.1. Path description

The target is considered to fly in the (x, y) plane with an initial
position [0, 0] and an initial velocity [1 m/s, 0 m/s]. Measure-
ments are taken for every 0.01 sec (T). Fig. 4 shows the 7-motion
sequence (CV-CT- CV-CT- CV-CT-CV):

(1) CV for the first 0.5 seconds(50 time intervals) (2) CT for
the next 0.5 sec s(51–100 time intervals) (3)CV for the next 1
sec (time intervals 101–200) (4)CT for the next 0.5secs (intervals
201–250) (5)CV for the next 1sec (time intervals 251–350) (6)CT
for the next 0.5secs (intervals 351–400) (7)CV for the next 1sec
(time intervals 401–500)
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3.2. Measurements
Two sensors are assumed to be at (i)S1:[1,1]; (ii)S2:[−1,−2].

The bearings from these two sensors to the target are calculated
for every T sec.

[Z]=
[
θ1
θ2

]
+

[
sd ∗ randn
sd ∗ randn

]
where

[
θ1
θ2

]
=

 tan−1 (yk−S 1(2))
(xk−S 1(1))

tan−1 (yk−S 2(2))
(xk−S 2(1))


(10)

Where sd(=0.01) is the covariance of measurement noise.

3.3. Application of filters
As the measurements are non-linear, the Kalman filter cannot

be directly applied to the readings. We have two equations (10)
and two unknowns (xk, yk), the coordinates of the target are cal-
culated by solving the two equations.[

xk

yk

]
=

 (S 2−S 1(2))+(S 1(1)∗tan(z(1))−S 2(1)∗tan(z(2)))
(tan(z(1))−tan(z(2)))

{S 1(2)∗tan(z(2))−S 2(2)∗tan(z(1))+(S 2(1)−S 2(1))∗tan(z(2))∗tan(z(1))}
(tan(z(1))−tan(z(2)))


(11)

The measurement matrix is given by

H =
[

1 0 0 0 0
0 1 0 0 0

]
The EKF and IMM-EKF are non-linear filters and can be applied
directly on the bearing measurements. For EKF the measurement
matrix h is a function which takes Xk and S = [S 1, S 2] as inputs
and calculates Zk.

H is the Jacobian matrix of h, which is obtained by calculating
the partial derivatives of the terms of h

Hk = ∇xkh (12)

For IMM-EKF, the initial model probabilities µ = [µ1 µ2]T cor-
responding to the maneuvering and non-maneuvering mode are
taken as 0.95 and 0.05 respectively. The Markov transition ma-
trix Pi j which specifies the switching from mode I to mode j is a
design parameter. It is taken as

Pi j =

[
0.9 0.1
0.3 0.7

]
The values in are taken on the basis that, in the initial stage, the
target is more likely to be in non-maneuvering mode and its prob-
ability to switch to maneuvering mode (P12) is low.

3.4. Comparison of filter outputs
The performance of the filters is compared by computing and

plotting the following parameters:

1. Measured and estimated x, y positions
2. Mean in x, y position errors. Its specifies the average error

between the true value and the measurements.

Mean in x position error =
1
N

N∑
i=0

(xk − x′k) (13)

Similarly for y position. Where x is the measured position
and x′ is the estimated position.

Fig. 5. Outputs from 3filters for sd = 0.01.

Fig. 6. RMS error in position with sd=0.01.

3. The percentage fit error(PFE) in x & y positions:

PFEx = 100 ∗ norm(x − x′)
norm(x)

(14)

Similar expression for y
4. Root mean square position error:

RMSPEx =

√√√
1
N

N∑
i=1

(xk − x′k)2, (15)

similarly RMSPE is calculated in y direction.
5. Root sum square position error:

RSSPEx =

√√√ N∑
i=1

(xk − x′k)2 (16)

6. The root sum variance

RSvarP =
√

Px + Py (17)

where Px and Py are the diagonal elements in P correspond-
ing to positions x & y.
From the figures 6–9 it can be seen that the RMS and RSS
errors in the position and velocity estimations is least in
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Table 1. Comparison of filters
Direct Measurement KF EKF IMM-EKF

Mean error (in mts)
X 0.6574 0.4456 0.1612 0.1327
Y 1.0132 0.3926 0.1987 0.1670

PFE X 7.0921 1.4990 0.2780 0.2268
Y 6.9583 0.9866 0.2348 0.1890

RMSPE-P (in mts) 6.5345 1.0639 0.2303 0.1862
RSSPE-P (in mts) 206.6385 33.6445 7.2826 5.8874
RMSPE-V (in mts) - 1.6111 0.5611 0.5029
RSSPE-V (in mts) - 50.946 17.743 15.902

PSvarP - 0.0527 0.0582 0.0611

Fig. 7. RSS error in position with sd=0.01

Fig. 8. RMS error in velocity with sd=0.01.

IMM-EKF compared to the KF and EKF for a standard de-
viation of 0.01.

7. The time complexity for the three filters is calculated.
(CC=computation complexity)

KF EKF IMM-EKF
CC(in secs) 0.000632 0.000718 0.00147

Similar simulations are carried out for standard deviation of
sd=0.1.

From the figures 10–13 it can be seen that the RMS and RSS
errors in the position and velocity estimations is least in IMM-
EKF compared to the KF and EKF for a standard deviation of

Fig. 9. RMS error in velocity with sd=0.01.

Fig. 10. RMS error in position with sd=0.1.

0.1.

4. Conclusions and Future Scope

From the above simulations and results we can conclude that
IMM-EKF performs better compared to KF and EKF for bearings
only tracking. In this paper robustness of IMM-EKF is proved in
worst conditions also. The performance is evaluated by consid-
ering noise of standard deviations, σ = 0.01 and σ = 0.1 and
mean error, PFE in X and Y directions, RMS, RSS for position
and velocity are calculated, in all of which IMM-EKF has per-
formed better. Computational complexity is comparatively high
but that problem can be overcome by implementing the algorithm
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Fig. 11. RSS error in position with sd=0.1

Fig. 12. RMS error in velocity with sd=0.01.

Fig. 13. RSS error in velocity with sd=0.1.

on a high speed DSP processor. In future, real time implemen-
tation of IMM UKF on DSP processor or FPGA can be carried
and comparison of IMM-EKF with IMM-UKF can be done.
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