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Abstract– In this paper, we develop a modified version of the Best First
Branch and Bound algorithm (BFBB) proposed in [5] for solving exactly
the Orthogonal Rectangular Packing problem (ORP). The ORP consists to
pack a given set of small rectangles in an enclosing final rectangle. In our
proposed version, we introduce a new upperbound in order to reduce the
problem space search. We also propose new strategies that eliminate several
duplicate packing patterns. Extensive computational testing onseveral ran-
domly generated problem instances shows the effectiveness of the proposed
algorithm.
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1. Introduction

Cutting and Packing problems belong to an old and very well-
known family, called CP in Dyckhoff [1], Wäscher et al. [2].
The CPbelongs to the combinatorial optimization problems. It is
mainly based on the geometrical aspect, which makes increase
its complexity by classifying it among the class NP-Hard prob-
lems [3]. The CP involves many industrial applications [4] from
computer science, industrial engineering, logistics, manufactur-
ing, production process, etc.

In this paper, we study one of the most interesting problems of
Cutting and packing, the Orthogonal Rectangular Packing Prob-
lem (shortly ORP) [5]. The ORP consists in joining a given set
of n small rectangular pieces, into an enclosing final rectangle.
Each type of piece i, i = 1, . . . , n, is characterized by a length li
and a width wi Moreover, a demand constraint bi is imposed on
each type of piece i, such as a piece i must be appeared exactly
bi times in the solution. The aim is then to minimize the area of
the enclosing final rectangle. There are various options on pack-
ing rule, in our case; the orientation of each piece is fixed i.e., a
piece of length l and width w is different from a piece of length
w and width l (when l, w). The ORP can be either weighted or
unweighted, we consider only the unweighted case in which the
profit of a piece is equal to its area (ci = liwi, i = 1, . . . , n).
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To solve this problem, many algorithms based on different
strategies various have been proposed. These algorithms can
be categorized into two categories: the heuristic algorithms and
meta-heuristic algorithms. The aspect of heuristic algorithms is
to determine the packing rules. Liu et al. presented an improved
heuristic algorithm based on the bottom-left method [6] The less
flexibility first principle [7] was introduced by Wu and al. Wei et
al [8] suggested a least first strategy which evaluates the positions
used by the rectangles. The meta-heuristic algorithms use meta
strategies such as genetic algorithm, neural networks, tabu search
list and simulated annealing in order to guide the process search
[9].

This paper is organized as follows: Section 2 describes the Or-
thogonal Rectangular Packing problem and the principle of the
exact method Best First Branch and Bound [10]. In section 3,
we give an improved version of BFBB based on the development
of a new upper bound (greedy heuristic), we also adapt the new
representation of the closed list and introduce the dominated and
duplicated models strategies. Finally, the performance of our al-
gorithm is presented in Section 4. A set of problem instances
is considered and benchmark results are given. Conclusions are
drawn in Section 5.

2. Improved algorithm for the BFBB

2.1. Orthogonal Rectangular Packing (ORP)
2.1.1. Presentation of the Orthogonal Rectangular Pack-

ing problem
Given a set of n small rectangular pieces S =

{(l1,w1), (l2,w2), . . . , (ln,wn)}, each piece i (i = 1, .., n), is
represented by a lengthli and a widthwi. Moreover, each type of
piece i is associated with a demand constraint bi, i.e. the piece i
must be included exactly bi times in the solution.

The set of all feasible solutions of ORP problem is denoted as
T = {T1,T2, . . . , Tm} consisting of m enclosing final rectangles,
such as each solution contains all the pieces with their copies. A
feasible solution T ∗ ∈ T is said to be optimal if it realizes the
minimum wastage.

We use a strategy of orthogonal build [11] in order to re-
duce the feasible patterns of packing. It is applied by combining
the pieces and their copies by horizontal and vertical builds. For
this purpose, we adopt the following definitions.
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Fig. 1. Horizontal and vertical builds.

Definition 1. Let p and p′ be two pieces of S, with dimensions
(l,w) and (l′,w′) respectively. We say that R = (l+ l′,max{w,w′})
(resp. R = (max{l, l′},w + w′)), is a rectangular packing (denoted
r-packing) obtained by joining the pieces p and p’ by a horizontal
build (resp. vertical). Moreover, the number of occurrences of
each type of pieces in each build does not exceed the upper bound
bi.,i = 1, . . . . , n (figure 1)

Srem: Remaining area (empty space) after the combination, of
lengthlrem and width wrem.

Definition 2. R is called a terminal packing (denoted t-packing),
if it contains all pieces with their copies.

2.1.2. Best First Branch and Bound algorithm (BFBB)

1. Upper bound

We propose an initial procedure (greedy) to produce a primary
upper bound for the exact algorithm. The suggested heuristics
begin with two constructed obvious t-packing:

– The first one is a horizontal t-packing satisfying the follow-
ing value:

Eh = (
∑

bili)(max
1<i<n
{wi}) (1)

– The second one is a vertical t-packing with the value:

Ev = (
∑

biwi)(max
1<i<n
{li}) (2)

The initial evaluation of the greedy heuristic consists in choos-
ing one of the two previoust-packing realizing the minimal value:

Esup = min{Eh, Ev} (3)

The value Esup is considered as a first upper bound. It is im-
proved by a greedy procedure ‘Algo1’ using a horizontal build.
The same process is used to produce another upper bound with
vertical build. Thus, the initial Esup of the exact algorithm is the
minimum value of the two previous upper bounds obtained by
the greedy procedure.

Algo1— The greedy procedure for the PAOR problem

Input: A set of rectangular pieces bounded by bi, 1 6 i 6 n
Output: A suboptimal solution Esup

Initial step:

1) Compute Esup using (3)
2) Set ξ be the set of all pieces with their copies and R be a

piece of ξ with the highest width wR = max R′∈ξ{wR′ }
3) Construct Init = (RInit, lrem,wrem) which represents the list

composed by r-packing. RInit = (bRlR,wR), lrem and wrem are
respectively, the length and the width of the sub rectangle
represented by S rem.

Main step:
Repeat
Choose the piece R’∈ ξ with the longest length lR′ = maxR′∈ξ

{lR } and form a horizontal build with RInit.

• Set ξ = ξ\{R’}
• Compute EInit the value of the surface of RInit and S rem =

(lrem,wrem) with lrem = lR′and wrem = wInit − −wR′ .

• Fill up the rectangle (lrem,wrem) with the pieces of the cur-
rent set ξ using a greedy procedure which consists in putting
randomly some pieces without overlapping and update the
set ξ.

Until: (ξ = ∅) or(Esup 6 EInit)
Terminal step:
If EInit < Esup, then the set Esup = EInit

End

2. Lower bound

Given an instance of the ORP problem and an r-packing R
[12], we expect to find a lower bound for the value of the bestt-
packing including R.

Let be:

g(R): The internal value of R equal to the total area of pieces
in R.
c(R): The non-used area in R, which is the difference be-
tween total surface of the rectangle R and the total area of
the pieces contributing to the construction of R.
h(R): The smallest area which is the surface covering the
rest of the demand constraints without tacking in account
the set of pieces contained in R.
f (R) = G(R) + h(R) is the minimal value of a feasible t-
packing containing R, where G(R) = g(R) + c(R)
h′(R): The estimation of h(R), smallest area representing the
surface which covers the rest of the demand constraints.

In general, it is not easy to find such estimation. Our estimation
h′(R) is computed as follows:

h′(R) =

n∑

i=1

ci(bi − xi) (4)

Where xi is the number of occurrences of the ith piece in R and
ci = liwi is the area of the ith piece.

Where, f ′(R) = G(R) + h′(R) representing the lower bound of
t-packing containing R.

2.1.3. Exact algorithm BFBB for the ORP problem
Algo2 describes the main step of the exact algorithm to solve

ORP problem. The BFBB Algorithm uses two lists ξ1 and ξ2:
The initial list ξ1 contains n elements such that each element
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Ri (i = 1, . . . , n), of dimensions (lR,wR) = (li,wi), has an inter-
nal value g(Ri) = liwi, an estimated value h′(Ri), a lower bound
f (Ri) and a vector d with dk ≤ bk(k = 1, . . . , n) which is the num-
ber of occurrences of the kth piece in Ri. The list ξ2 is initialized
by the empty set.

At each iteration, we select an element R of the set ξ1, having
the smallest lower bound f ′ then place it in ξ2. A set ξ3 of the new
r-packing is created by combining the element R with elements
R′ of ξ2 using horizontal and vertical builds. The elements of
ξ3 satisfy the following conditions: dk ≤ bk, k = 1, . . . , n and
f ′(R) < Opt (where Opt is the best current solution value). It is
created by combining the element R with all the elements R′ of
ξ2

The algorithm stops when the value f ′(R) of the element R se-
lected from ξ1 is greater than or equal to the best current solution
value or when the list ξ1 is reduced to the empty set.

Algo2— Exact algorithm BFBB for the ORP

ξ1 :The set of subproblems;
ξ2 :The list of stored best subproblems;
R and R′: r-packing;
f ′(R): The lower bound of the subproblem containing R;
Opt: The best current solution value.

Input: An instance of the orthogonal rectangular packing prob-
lem

Output: An optimal solution value Opt

Initial step:
ξ1={R1,. . . , Rn}; ξ2, ∅ and finished=false ;
Let Esup be the upper bound obtained by applying the greedy

procedure presented by Algo1 and Opt=Esup
Main step:
Repeat
Choose the r-packing R with the smallest f’ value; (denoted

f’min)
If Opt- f ′min6 0 then finished=true
Else Begin
Transfer R from ξ1 to ξ2and construct the elements of ξ3 such

that:

• ξ3 is the set of orthogonal builds between R and all elements
of ξ2;

• Each element of ξ3 satisfies the constraints bi(16 i6n) and
f ′ < Opt;

If ∃ a terminal packing R′ ∈ ξ3\ f ′(R′) < Opt, then Opt = f ′(R′);
update the set ξ1 by ξ1 ∪ ξ3

Replace the set ξ1 by ξ1/{non-terminal packings with the eval-
uation f ′ > Opt };

If ξ1 = ∅, then finished=true; End if
Until finished=true;
End

2.2. The new version of the algorithm BFBB

In our modified version of the algorithm, we start by determin-
ing a new upper bound (initial feasible solution) in order to speed
up the algorithm by pruning unsearched areas which cannot yield

better results than already found. We also, introduce a new rep-
resentation of the closed list which permits to reduce problem
space search without affecting the quality of the obtained solu-
tion. Finally, we present the dominated and duplicated patterns
strategies in order to discard some symmetrical pattern packing

2.2.1. The new upper bound
We expand a new greedy procedure (Algo 3) in order to pro-

duce an initial upper bound for the orthogonal rectangular pack-
ing problem. The algorithm begins by the computation of the
initial upper bound (using equation (3)) which will be improved
thereafter. We consider, a list ξ containing a set of pieces with
their copies sorted in the decreasing order of width. We state
by build a rectangular Rrec by the pieces with the highest width.
In the main step of the procedure, we realize a successive hor-
izontal builds in the following way: We introduce an interme-
diate list ξ′ composed by pieces of the highest width, then we
select the longest piece R of the listξ’ and pack it on the right of
Rrec .We carry out thereafter, a filling with the remaining pieces
on the sub rectangle (empty space) EV. The procedure stops when
Esup 6 Erec where Erec is the surface of the resulting rectan-
gle Rrec , or when the list ξ is reduced to the empty set. If
Esup 6 Erec we assign the value of Erec to Esup, Esup is the best
upper bound obtained by a horizontal build.

Algo.3—A greedy procedure for the ORP

Input: A set of the rectangular pieces bounded by bi, 16 i 6
n

Output: Suboptimal solution denoted Esup

Initial step:

1) Compute Esup such that Esup= min{Eh, Ev} where Eh =

(
n∑

i=1
bili)( max

16i6n
{wi}) and Ev = (

n∑
i=1

biwi)( max
16i6n

{li})
2) ξ: Set of the pieces with their copies sorted according to the

decreasing order of width: w1 > w2>. . . > w
n∑

i=1
bi

3) Let Rrec be the initial rectangle obtained by a horizontal
build of the piece R1with its copies: Rrec = (b1l1,w1), with:
ξ = ξ \{R1/lRk = /lR1et wRk = wR1}

Main step:
Repeat

1. Let ξ’ be the set of the pieces with highest width:
2. ξ’={Rk : wRk= maxR j ∈ ξ{wRk}, ∀ lRk}
3. Choose the piece R’∈ ξ’/lR′=maxRk ∈ ξ′{lRk}, construct the

horizontal build of R′ with Rrec and set: ξ = ξ\{R’}
Compute the empty space EV, result of the previous construction,
such that EV=(lR′ ,wRrec − wR′)
while (EV :(lEV ,wEV ),(0,0))) and (if ∃ a piece which re-enters in
EV)
begin

Place the piece Ri in the space EV
Set ξ = ξ\{Ri}
Compute the new empty space EV

end;
Until: (ξ = ∅) or (Esup 6 Erec);
Final step: ifErec < Esup then Esup = Erec.
End.
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2.2.2. New representation of the closed list
The algorithm looks for the smallest surface which contains

all the pieces and their copies. It is based on two mains lists
closed and open ones. These lists occupy a very important place
memory during implementation. The new representation of the
closed list [3] allows reorganizing the closed list in an intelligent
way to avoid any useless computation.

Indeed, we fix L and W according to the feasible initial solu-
tion of Algo1 such as:

L: Length of the rectangle solution obtained by Algo1, using
horizontal build, and

W: Width of the rectangle solution obtained by Algo1, using
vertical build.

In each iteration, we select R from the set ξ1, having the small-
est lower bound f ′ and we place it in ξ2. The set ξ3 of the
new r-packing, satisfying dk 6 bk, (k = 1, . . . , n) and f ′(R) <
Opt (where Opt is the best current solution value), is created by
the horizontal builds of R with all elements R′ of the set ϑlR and
the vertical builds of R with all elements R

′′
of the set ϑwR where

ϑlR and ϑwR are subsets of ξ2 such that:
{
ϑlR = {q/lq = lR + lp 6 L, p ∈ ξ2}
ϑwR = {q/wq = wR + wP 6 W, p ∈ ξ2}

Where lp and wp are respectively, the length and the width of
the element p.

The algorithm stops when the value f ′(R) of R selected from
ξ1 is greater than or equal to the best current solution value or
when the list ξ1 is reduced into the empty set.

2.2.3. Notion of the dominated model and the order search
The dominated patterns: The dominated pattern notion [13]

is adapted to BFBB, to eliminate some useless patterns as fol-
low: Let R and R′ be two r-packings, the orthogonal construction
between R and R′ known by dominated pattern if there exists
R
′′ ∈ ξ1 which occupies the empty spaces S rem obtained by or-

thogonal construction between R and R′. This technique is in-
troduced in BFBB, such that for each new pattern produced by
an orthogonal build, we compute the empty space. If, there is a
piece of ξ1 which can occupy this space without violation of the
constraints, then this pattern is eliminated.

Order search: The order search [13] is applied to the Best First
Branch and Bound algorithm, in order to eliminate some sym-
metrical patterns. It is provided that in the initial open list, at
each piece Ri (i∈I), we associate two order searches, horizontal
and vertical, where i=θh =θv =1,2,. . . , n.

For each r-packing A, obtained by horizontal build between
K and Q, we introduce a new order search such that θh(A) =

min{θh(K), θh(Q)} and θ = θv(A) = max
E∈ξ1∪ξ2

(θv(E)) + 1

In each iteration, we test (test of the duplicated patterns) for the
combined patterns whether the obtained pattern are duplicated,
then they wouldn’t be constructed.

Test of the duplicated patterns. Let R and R’ be two r-
packing and θh(R) and θh(R’) , respectively two horizontal Order
searches of R,R′. θv(R) and θv(R′) respectively a two Vertical Order
searches of R and R′.

If R is taken from an Open list and is composed at least by two
pieces and if R′ is taken from a Closed list and is composed by a
unique piece type. Then:

Horizontal build between R and R′ is a duplicate model if
θh(R) < θh(R′)

Vertical build between R and R’ is a duplicate model if θv(R) <
θv(R′)

Improved exact algorithm (IBFBB (:

ξ1: A set of subproblems;
ξ2: The list of stored best subproblems;
R,R′ and R

′′
: r-pickings;

f ′(R): The lower bound of the subproblem containing R;
Opt : The best current solution value;
S rem: The empty space obtained by a horizontal or vertical

build between R and R;
θh(R): The horizontal order search of R;
θv(R): The vertical order search of R.

Input: An instance of the orthogonal rectangular packing prob-
lem

Output: The optimal solution value Opt

Initial step:
ξ1= {R1,. . . ,Rn} ; ξ2=∅ and finished = false ;
Let Esup be the upper bound obtained by applying the greedy

procedure presented by Algo3; Opt = Esup

Principal step:
Repeat
Choose the r-packing R with the smallest value of f ′; (denoted

f ′min)
If Opt- f’min 6 0; then fin = true
Else Begin
Transfer R fromξ1 to ξ2

construct all elements of ξ3 such that:
Each element R′′ of ξ3 obtained by horizontal build between

R and the elements ϑlRof ξ2such that ϑlR= {q/lR + lp6 L, p∈ ξ2}
Each element R′′ of ξ3 obtained by vertical build between R

and the elements ϑwRof ξ2such that ϑwR={q/ wq = wR + wp6 W,
p∈ ξ2}

Test R with all elements of ξ2. If the model obtained is a du-
plicated, then the new model is not built.

Each element of ξ3 satisfies the constraints bi (16i6n) and
f ′ <Opt ;

Each model of ξ3which satisfies the test of dominance is elim-
inated.

Each element of ξ3is labelled by an order search.
If it ∃ a final packing R’∈ ξ3\ f ′(R′) <Opt, then Opt = f ’(R’);

To update the set ξ1 by ξ1 ∪ ξ3 Replace the set ξ ξ1 /{non-
final packing with the evaluation f’> Opt };

If ξ1 = ∅ then fin = true;
End if
Until fin = true ;
End

3. Implementation & results

The proposed algorithm was coded in C and tested on a com-
puter with Pentium 4 CPU 3.00 GHz, and 1 GO of RAM. The
performance of our algorithm (IBFBB) is evaluated on several
randomly generated problem instances. We consider a group of
50 instances; the number of used pieces is taken in the interval
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Table 1. Performance of the improved algorithm BFBB.
Initial Bound AV. Ratio BFBB IBFBB

UB(1) UB(2) AV. Time AV. nodes AV. Time AV. nodes
1,21 1,15 86,88 3638,58 13,75 2532,24

Table 2. Performance of the IBFBB compared to the BFBB algorithm.
Gain (%) AV. time (%) AV. nodes

BFBB versus IBFBB 84,17 30,40

[3, 16]. The dimensions (liwi) of all pieces are fixed in the in-
terval [1, 80], and the bound bii = 1, . . . , n, is randomly taken in
interval [1, 9].

Performance of the improved BFBB algorithm
In table 1

AV. Ratio: Average ratio represents the quality of both solu-
tions obtained by the greedy procedure algo1 (UB (1)) and
the new greedy procedure algo3 (UB (2))
The ratio is computed by an usual measure A(I)/Opt(I),
where A(I) represents the solution value obtained by ap-
plying the algorithm A on the instance I and Opt(I) is the
optimal solution value of this instance.
AV. time: The average execution time (measured in seconds)
which represents the time that both BFBB and IBFBB algo-
rithms need to reach the optimal solution.
AV. nodes: The average nodes which represent the total
number of nodes (builds) generated by both BFBB and
IBFBB algorithms.

According to the results obtained in table1, we notice that the
new upper bound Algo3 is better than Algo1, since it performs
(in average) from 1.21 to 1.15 the quality of solutions produced
by the greedy procedure (see Algo3).

Table 2 shows the performance of the IBFBB compared to the
BFBB algorithm. The computed average time and nodes evalu-
ate the performance of the IBFBB when the dominated and du-
plicated models strategies are used. In the same table, we ob-
serve that the average computational time gain is considerably
increased, it is equal to 84,17 and produces an average reduction
of 30,40 in term of the number of generated nodes.

4. Conclusion

In this paper, we have proposed an improved version of the
BFBB algorithm for solving the orthogonal rectangular packing
problem; it is based on the following new proposals:

1. A new upper bound are used at the root node of the search
tree

2. A new representation of the closed list data structure is used
in order to speed up the construction of new configurations

3. A symmetric and dominate model strategies are introduced
to reject some models and to curtail the search in the devel-
oped tree.

The experiment results indicate that the IBFBB algorithm per-
forms well and show that the improved algorithm is able to solve
efficiently small and medium problem instances within short ex-
ecution time.
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