Information Sciences and Computer Engineering, Vol. 1, No. 1, (2010) 53-59

/] International Journal of
PHARUS

Information Sciences and Computer Engineering

journal homepage: http://www.ijisce.org

J §nformation

L&lomputer

Autonomic Computing Strategy for Server Virtualization

Marius-Constantin Popescu®

Faculty of Mathematics and Informatics, University of Craiova, Romania

Abstract- This paper presents a technique specially adapted for the imple-
mentation of some techniques for self-supply and self-optimization for auto-
nomic computing with application in server virtualization. The autonomic
computing processes are considered non-linear, variable systems with con-
stant linear parameter variations. The approach is based on the fact that a
computer system behaves in time in a non-linear way, its parameters having
a random variation and the components of the autonomic environment can
fail occasionally.

Keyword: Redundant structures, automatic control, server virtualization.

1. Introduction

Definition of the usual time fault-tolerant electronic systems, is
that the correct implementation of the system continues to function
entry / transfer / exit, in the presence of a certain set of faults that
may occur during operation without corrective action from the out-
side [1, 2, 3]. Fault-tolerant systems, according to this definition,
assumes on the theory that the system design faults were removed
before entry into service. The actions of tracking system defects
canbe considered as included in the diagnostic algorithm of failure,
distinguishing between the following approaches [4, 5]:

a) The initial test is carried out before putting into service
of equipment and allows identification of hard defects in-
troduced during manufacturing processes, design errors or
software errors.

b) Testing on line takes place simultaneously with the normal
operation of the system and can be implemented with both
hardware and software means This operation involves the
use of error detecting codes, doubling the elements, com-
paring the output variables, the use of surveillance systems
such as maintenance microprocessors that run monitoring
system software. The main advantage of online testing is to
detect and diagnose faults before the occurrence of signifi-
cant damage to the system.

c¢) Testing the redundant modules must determine whether the
backup modules are able to take over the functions of the
functional modules. For this purpose it is used either on-
line testing methods (self-testing systems) or off-line testing
methods (diagnostic software for preventive maintenance)

*Corresponding author:
Email address: popescu_ctin2006 @yahoo.com, Ph: +40 745438287

depending on the type of protective redundancy used. Re-
dundancy is a convenient method for increasing the relia-
bility of the electronic systems if the elements malfunctions
that compose the system are independent events. But prac-
tice has shown that sizing redundant systems, the simplify-
ing assumption of independence of failure, leading to inac-
curate assessments. Therefore for a realistic design of com-
plex electronic systems with redundant structure is neces-
sary to take into account the effect of dependent failures of
common node.

Techniques to achieve structural redundancy can be classified as
[6, 7]:

a) Static redundancy (masking defects techniques) involving
the coding of the logical functions of the system with re-
dundant codes and techniques of errors recognition and in-
stant masking effect of a defect in the system, by activat-
ing the automatic backup elements. This multiplication of
reserves in the system structure can be achieved from com-
ponent level to the whole system level (global and individ-
ual structures). The main advantages offered by the applica-
tion of static type redundancy can be summarized as fol-
lows: instant corrective action, prior diagnosis of defects
is not necessary, switching from non-redundant systems to
the same system with redundant structure is relatively sim-
ple. It should be noted however, that digital systems redun-
dant and static structure raises numerous problems of syn-
chronization between system modules and introduces many
fan-in and fan-out limitations.

b) Dynamic redundancy (switching) is the devoted term of
techniques that involves using multiple back-up modules
with the same functions, of which only some are opera-
tional, others are in stand-by (to be connected only in the
moment of identifying a failure). This technique is used
to achieve self-preparation of the systems by automatically
switching the reserves, or performing reconfiguration when
the system must be reorganized in a different layout than
the original. Using dynamic redundant structure has the fol-
lowing advantages: there is needed to be electrically pow-
ered only one back-up module; the switch that performs
the activation stock in the system provides a insulation of
the defects; the number of reservations system can be op-

54 Popescu/Information Sciences and Computer Engineering, Vol. 1, No. 1, 2010

START

v

Defects diagnostics and replaycing
the defect compoents

|

With

selective

redundant

structure

¥

With Without
functionale functionale
back-up back-up
elements elements

,. l

l

With
masive
redundant
structure

l

Without
functionale
back-up
elements

With
functionale
back-up
elements

! |

Autodiagnostics
of the defects

Back-up
activation

N-duplex back- Dl_JF:H system
up systems with automatic

N\

stop

STOR

L 4

s

Fig. 1. The diagram of an algorithm for detection and diagnosis of faults.

timized for a given task, without changes in the underlying
structure; does not introduce any construction limits as the
static redundancy structure, regarding the equipping the dig-
ital systems.

2. Reconfigurable Computing Architecture for Autonomous
Systems

In the present, the data structure of an enterprise is very com-
plex so that the operation, functioning and the maintenance re-
quire considerable material and intellectual efforts. The idea of
building an intelligent information management structure has
long been developed in academic and industrial environment. A
higher degree of automation in monitoring and controlling all the
elements of the information structure is given by the principles of
autonomous computers [8, 9]: self-configuration, self-protection,
self-optimization and self-preparation.

In Fig. 2 is presented a structure of constructive elements of
an autonomous system and interaction between them. This archi-
tecture is similar to the automatic control systems. Although the
approach is general and can be applied to many situations, it can
analyze the main times of measurement from the multitask appli-
cations. They may be elements of trading in banking, insurance or
data systems.

Fig. 3 shows the interconnection structure of a self manage-
ment system that has a single resource (called an element of man-

agement). In this architecture, the resource can be a single com-
puter system, a software application hosted on a computer sys-
tem, or a collection of more logic related systems (distribution
computer system).

The sensors provide measurement data acquisition of the re-
sources and ensure the implementation of the means to modify
the times of behaviour of the resources.

Current research on developing optimal architecture of an au-
tonomous computer system for a specific application is based on
the development of requirements on which constituent elements
are built.

It proposes a set of seven basic elements for building an auto-
nomic computing system, each with a clear function, well defined
and distinct [10, 11]:

Sensor Component - Is responsible for notification and data
acquisition from the entity or entities managed and that de-
scribe quantitatively the state of the managed systems. Such
a component comprises several sensors, if they are to the
supervision of various entities.

Filter Component - Filter data from sensors by eliminating
noise or making changes requested by the controller who
processes them. Filter component implements a series of fil-
ters that allow processing through a series of consecutive
filters.

Coordinator Component - Organize the process of predic-

Popescu/Information Sciences and Computer Engineering, Vol. 1, No. 1, 2010 55

Actuator
(Scripting Languages)

Controller

Provision

IT infrastructure
(Controlled Object)

Monitor

Transducers

Fig. 2. The structure of an autonomous computing environment.

Sensors Effectors
Analyze Plan
Autonomic
Manager |
Knowledge
Monitor Execute

Sensors Effectors
Managed
Element

Computing Processes

Fig. 3. A generic architecture for autonomous computing systems.

tion. It receives data from the filters, uses the modelling
block, the estimator and the decision block, for predic-
tive deciding and sends this decision to the actuators. Once
known the decision sensors are added or removed.
Modelling Block - Notes the model entity or entities gener-
ated. It is used by the estimator and by the decision block. It
can update the model given a prior estimation or of changes
to the modelled infrastructure.

Estimator — makes estimations on future modelled system
state on the current status, or if necessary, it is using infor-
mations on previous states.

Decision Block - Make predictive decisions based on esti-
mated data.

Actuator Block — activates the state of the actuators based on

signals provided by the decision block. It comprises several
actuators.

Control theory uses a simple reference architecture and gener-
ally applicable. The main objective of this architecture is to pro-
vide components to handle a target system to reach the wanted
forecasted target. Figure 4 shows the reference architecture. The
handling component of the system target is called a “controller”.

The target system is the computerized resource, the controller
is an independent leader and the controlled target is part of the
knowledge component, regarding the autonomous computer ar-
chitecture.

The other components of the reference architecture are:

A reference input r(k), which is the desired value of the output

56 Popescu/Information Sciences and Computer Engineering, Vol. 1, No. 1, 2010

Disturbance Noise

Input Input
w(t) n(t)
Reference l‘[g:;::d
Input Error Control Input
" 2 Process u(t Target
u (t) &® © ¥(t)
0
Transformed
Output
® Measur t
¥, () Device

Fig. 4. Block diagram of a control system.

size (measured) or a transformation of it. Examples include the
desired response time, the CPU utilization, and the descent time
in a trust frame. A control error e(k), the difference between the
reference input and transformed output. The control error is used
as input for the controller component. A control input u(k), which
is determined by the controller component and used to influence
the behaviour of target system. The control input will sometimes
influence target system through actuator. Examples include the
number of servers in a scattered placement of conduct and grant
parameters for the software. A measured output y(k), which is a
measurable characteristic of the target system. Examples include
CPU utilization and response time of the application. The en-
try noise n(k), which can be any changes affecting the measured
output produced by the target system. Output disturbance d(k),
which is any change that affects how the input control influence
the measured output.

The examples include a backup process or a virus-scan pro-
cess running during the measurement. The target system, which
is the computerized system to be controlled. Measurement Unit,
which converts the measured output such that it can be compared
with the input reference. An example of transformation is filter-
ing the measured output to reduce stored noise and low pass fil-
tering to exclude high-frequency data. The Controller, which is
the component that determines the setting of input control neces-
sary to achieve the desired value as set by the input reference. The
controller calculates the values for the input control based on cur-
rent values, or in the past, of the control errors [12].

3. Automatic Control in the Virtual Environment

The technique applied in this case is based on real-time mea-
surement of the values of the load generated by the central unit
for the running processes on each server, by calculating the ra-
tio between the two. Based on the known coefficient from the
stage of allocation of the tasks, the processing central unit coef-
ficients are adjusted as the servers serve the individual customer
requests. Since the reallocation of the coefficients of the central
processing unit is a slow process and should respond to long-term
changes of the load, the response mechanism must eliminate all
the rapid changes of the measured parameters, such as the central
processing unit load. As a result, the output of the transducer
is conditioned, calibrated and placed in a mediation filter. In
this experiment autonomous computer system architecture con-

siders that the computer system whose output is the central pro-
cessing unit load, is nonlinear, stochastic and with slow param-
eters. The model of the system under consideration is described
by a nonlinear discrete time system having both parametric and
non-parametric uncertainties. For all servers running on the same
hardware support, the adaptive robust controller calculates the
percentage of allocation of central processing unit. Considering
that on each support of each computer hardware there are running
j different virtual servers then the system will run autonomously
computing j different robust adaptive controllers. However, it is
not a realistic solution because it involves much consumption of
the computing power for the load control. Therefore the existing
computer resources will be allocated to active processes. It will
be considered separately for each hardware will be calculated at
intervals depending on the slow dynamics of the server process a
single adaptive robust law governing.

4. Implementation

The architecture presented above for self-configuration of the
central processing unit’s load using a robust adaptive controller
was implemented and tested on a computer network operating in
real time. The test configuration is shown in Fig. 5. The virtual
server was put into service by installing a program on a computer
with VMM Intel Core 2 Duo.

The actuator of the whole system, represented by IBM Tivoli
Provisioning Manager (TPM) was installed on another IBM com-
puter with a processor operating at 2.6 GHz. Virtual computers
were obtained by virtualization with Debian Etch Linux. Auto-
nomic computing environment components were implemented as
Web services, all running on a computer with a 3.2 GHz Intel pro-
cessor. To configure the entire system it was designed a graphical
user interface. For implementation there were used Java Server
Faces libraries. The robust adaptive controller was included in
the checklist interface, as exemplified in Fig. 6.

The controller is selectable it from a list of synthetic control
algorithms. Until a few controllers are currently available: Con-
vergence Notification Controller, Robust Adaptive Controller and
PM Controller, which is a classical proportional controller. For
the simple architecture of virtual servers that does not require
the installation of hardware and complex software, you can use
a simple control law, which gives good results for the control
of the coeflicients of the central processing unit. Sophisticated

Popescu/Information Sciences and Computer Engineering, Vol. 1, No. 1, 2010 57

- Xen VMM Server \

T
Client Aplication 1 T

(Workload Generator)

TEM Hip Server]

=
=

Application 1

Provision CPU ratio (35H)

Client Aplication 2
{Workload Generatory

(I —

WebSphere |j pplication 2

Monitor
VM

Monitor
WebSphere
Application

Tivoli Inteligent
Orchestrator Server

_—

— Sensor
. Cnrm]?mmn TWebservice Server
Webservice Server

Fig. 5. Test configuration used.

[Depiay syctem |

Fig. 6. Graphic interface with the user hand machines for setting the type of controller in the autonomous computing system.

algorithms can be used for complex architectures of servers, op-
erating in critical systems. Design tools developed as shown in
Fig. 7a, allow configuration of several control models. To config-
ure the system, the system engineer selects with the mouse com-
ponents while the components of the system can be connected
and turned on during operation. The user must connect the com-
ponents through arrows. Fig. 7a Configuration window shows
the original state of the sensors. The load of the central process-
ing unit, response time and number of calls are set to provide
the coordinator corresponding measured values. The filter is also
configured with a configuration window that is shown in Fig. 7b.

Estimator is configured using the windows in Fig. 8. The con-
figuration of the estimator includes choosing a model, as shown
in Fig. 8a, where is shown how the filtered variables are trans-
formed into model variables of the filtered variables. The param-
eters to be set are the number of iterations required to achieve
a best possible estimate for the variables modelled, the conver-
gence measure and sampling period as explained in this part. The
control law is interpreted and a decision is made to change the
central processing unit’s load according to certain thresholds that
are used to alleviate the rapid changes of the central processing
unit’s load.

The controller sends the appropriate commands to the actua-
tor represented by IBM Tivoli Provisioning Manager. Based on
values obtained by comparing the control achieved by the robust
adaptive controller and mitigating factors represented in the form
of thresholds, the system provides the actuator how to act. The

engineer system engineer must indicate to the system which ac-
tuator is used and on which physical computer is it so that it can
launch all commands related to configure the entire computing
environment autonomously and to specify what parameter must
be used for the initialization of the actuator. Set up links between
adaptive robust controller and IBM Tivoli Provisioning Manager
is done through a window of configuration, as shown in Figure 9.

5. Conclusion

Based on the study it can be concluded that the implementa-
tion of redundant structures in order to ensure tolerance to mal-
functions is the most modern method of increase in reliability
of complex digital electronic equipment. Computers tend to in-
corporate autonomous structures in automatic data management
systems so as to adapt to the changes in configuration, protection
and reconfiguration of available resources during operation. One
of the current research directions consider autonomous comput-
ers as an adaptive control system that solves the limitations im-
posed by optimal use of available resources as a result of exter-
nal requests. The proposed application for testing ”The automatic
control in the virtual environment” is a simulation of the perfor-
mance obtained using the robust adaptive control algorithm and
method. In this experiment, it was proposed an original archi-
tecture for autonomic computing system whose active task is a
central processing unit with slow time-varying parameters. To
get more features in the simulation, it was assumed that every

58 Popescu/Information Sciences and Computer Engineering, Vol. 1, No. 1, 2010

e —
[05-Sysiembdaiics-Systambdotics

4 CPUzansShcel astMessurament -court

| trode-Serdet TradeAppSendet

FequestCount-count
El ServiceTime-court
[zerviceTime.manTime
[T serviceTrme-minTime
[serviceTme-startrime

¥} gerviceTme-tatalTime

a)

Fiiter? - AutonomicSensorFiterManager

Locetion:
Cwder Filter type
o n com.ibm atanomic nuse fiter byae pmi P
1 n com.ihm.stonomic muse filker type pmi T
3 E com.ibim.autanomic nuse fiter type pmi b
< 2]

Fig. 7. Window configuration: a) the sensor; b) filters.

waon | constants - saner] M
Mhrasen ol variabde
Q- rm Ly el

Rt o ntteassmred o

Modied waislile
{ Lidrzehan
tracke-Seriel. Trasin s Serdel
FequestCourt-count

tricda Tarsal Trads AR S
ServceTre-coont
Irade-Servel TradeAps Servivt
St T et

Filtne - oot

FBsponsaTime

Thaughpin

a)

, Ectater
etk alrmnEnkimatod
[Ei= - :;_:un:;lnnl‘n- ntrair] |

Eadirnalon vartshin mawpang

Futimutmi

e Frirmse iminial vahee

EaETthon L

Thir Time: G000

b)

Fig. 8. Window configuration: a) allows the user to choose a right model; b) corresponding to the processing time and estimator use.

Mol
ks

E 0 i
RosuoreoTing m
I 0
itz T,

o 10000

Tkt T
o T

Dlugs 7o

a)

Wariable Valus
Simase]

Tiohos hemzs

Gpadhe
arclyzer 00N
par)

b)

Fig. 9. Window configuration: a) the parameters for the decision block decision; b) actuators servers.

hardware support for each computer connected to cluster there
are running different virtual servers whose operating is managed
by an adaptive, robust, autonomous computer system.

References

[1] H. Carstea, D. Margeloiu, and C. Mitaru, “Redundancy and testa-
bility in digital filters,” Bul. Stiint. Univ. Politehnica Timisoara, Se-
ria Electronica si Telecomunicatii, Tomul, vol. 53, no. 67, pp. 204—
206, 2008. Fascicola 1.

[2] M. M. aescu, “Contribuii la creérea disponibilitdii sistemelor
digitale complexe utilizind reconfigurarea autonoma dinamica,”
(Timisoara), 2009.

[3] M. C. Popescu, O. Olaru, and V. Balas, “Identification of the
de-synchronization, synchronization and forced oscillation phe-
nomenon of a nonlinear system,” WSEAS Transactions on Systems
and Control, vol. 4, pp. 177-187, April 2009.

[4] H. Carstea, O. Mitaru, and R. Negrea, “Method for computing
a reliability function of digital systems with redundant structure
through coding,” ISSE 2008, 31°" International Spring seminar on
Electronics Technology, pp. 48-53, 2008.

[5] H. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.
Rumble, L. Eyal, M. Brudno, and M. Satyanarayanan, “Snowflock:
rapid virtual machine cloning for cloud computing,” EuroSys,
pp. 1-12, 2009.

[6] M. C. Popescu, O. Olaru, and N. Mastorakis, “Processing data for
colored noise using a dynamic state estimator,” WSEAS Transac-
tions on Communications, vol. 8, pp. 321-330, March 2009.

(71

(8]

(91

(10]

(11]

[12]

B. Solomon, D. Ionescu, M. Litoiu, and M. Mihaescu, “Toward a
real-time reference architecture for autonomic systems,” 29" In-
ternational Conference on Software Engineering and Workshops,
pp. 1224-1231, 2007.

M. Litoiu, M. Mihaescu, B. Solomon, and D. Ionescu, “Scalable
adaptive web services,” in Proceeding of SDSOA, pp. 1107-1112,
Leipzig, May 2008.

A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, and
S. K. P. Kokosielis, “Automatic virtual machine configuration for
database workloads,” SIGMOD Conference, pp. 953-966, 2008.
N. M. M. C. Popescu, O. Olaru, “Equilibrium dynamic systems
intelligence,” International Journal of Mathematical Models and
Methods in Applied Sciences, vol. 3, no. 2, pp. 133-142, 2009.

B. Solomon, D. Ionescu, M. Litoiu, and M. Mihaescu, “A real-
time pattern based approach to autonomic computing,” SEAMS
ACM Workshop on Software Engineering for Adaptive and Self-
Managing Systems, pp. 78-85, May 2007.

M. Steinder, I. Whalley, D. Carrera, I. Gaweda, and D. M. Chess,
“Server virtualization in autonomic management of heterogeneous
workloads,” Integrated Network Management, pp. 139-148, 2007.

Marius-Constantin Popescu was born in Gorj —
Tismana, on the 19-th of may 1965. In 1990,
has gratuated the University of Craiova, Roma-
nia, Faculty of Automation and Computer and
in 1995 he graduated from the Faculty of Math-
ematics and Informatics, University of Craiova.
Author and co-author of 175 scientific papers,
10 textbook and 11 books. In 2003 has received
scientific degree Ph.D, he is currently Associate
Professor of University of Craiova, Romania.
Professional skills: measurements in industrial processes, fuzzy sys-
tem modeling, artificial intelligence, optimization and automation of in-
dustrial processes, web intelligence, intelligent communication network
control.

